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1 INTRODUCTION AND MOTIVATION 

Deterioration is among the primary concerns regarding the structural performance and 
functionality of bridges and their components. Such degradations can potentially lead to various 
forms of structural deficiencies and eventually failure if adequate repair and rehabilitation 
actions are not performed at appropriate times. Also, the degraded functionality of bridge decks 
and the application of time-consuming repairs and rehabilitations lead to increased traffic delays 
and increased vehicle operating costs. In light of annual budget constraints, infrastructure 
agencies, such as state Departments of Transportation (DOTs) in the US, prioritize their bridge 
maintenance needs. Commonly, bridges with higher degradation levels receive higher priority 
for maintenance. To make trade-offs across bridges and over time, key inputs to the prioritization 
and decision making process are bridge condition assessments and predictions. 

To support such functionalities, the Federal Highway Administration (FHWA) developed the 
bridge management system AASHTOWare BrM (AASHTO BrM User Manual, 2015) – 
formerly known as Pontis (Pontis User Manual, 2005) – that has been successfully used in 
numerous practical decision-making settings. It is based on a discrete Markovian deterioration 
model in which the type and extent of deterioration of bridge components are expressed in visual 
terms. Critical parameters of discrete Markovian deterioration models are probabilities that 
describe the likelihoods of bridge components transitioning from one discrete condition state to 
another. These transition probabilities are either determined based on expert judgement or, 
ideally, they are estimated based on field inspection data. 

The AASHTO Bridge Element Inspection Guide Manual (2010), subsequently referred to as the 
AASHTO Manual, establishes a national guideline for performance evaluation of bridge 
elements and collection of inspection data. In the manual, the state of performance of a bridge 
element is expressed as a condition state vector. For example, for bridge decks, the focus of this 
study, four condition states are defined based on the extent of different types of defects, such as 
cracking, spalls, and delamination. The definition of condition states of bridge decks is 
characterized in Table 1. For a given bridge, each entry of the condition state vector is the 
proportion of the deck that is in the corresponding condition state. 

TABLE 1: Definition of condition state for bridge deck based on the AASHTO Manual 
Defect Condition State 1 Condition State 2 Condition State 3 Condition State 4 

Cracking None to hairline Narrow size and/or 
density 

Medium size 
and/or density 

The condition is 
beyond the limits 

established in 
condition state 
three (3) and/or 

warrants a 
structural review to 

determine the 
strength or 

serviceability of 
the element or 

bridge 

Spalls/ 
Delaminations/ 
Patched Areas 

None 
Moderate spall or 

patch areas that are 
sound 

Severe spall or 
patched area 

showing distress 

Efflorescence None Moderate without 
rust 

Severe with rust 
staining 

Load Capacity No reduction No reduction No reduction 

 

The AASHTO Manual, which is adopted by all state transportation agencies in the US, requires 
regular observations and measurements of highway bridges to capture their physical and 
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functional states. State DOTs usually carry out such bridge inspections once every one to two 
years. Typically, the resulting inspection data are used on a one-time basis to estimate 
deterioration models whereby subsequent observations are used only as inputs to forecast 
deterioration. 

The objective of this study is to develop a framework that utilizes the bridge inspection data 
collected on an ongoing basis to update transition probabilities for concrete bridge decks. Doing 
so is expected to improve the representativeness of these probabilistic deterioration models and 
the accuracy of their predictions. An evaluation is also conducted to assess the value of such an 
approach. 

2 DETERIORATION MODEL: MARKOV CHAIN 

As noted previously, based on the condition state definitions, each entry in the condition state 
vector represents the proportion of the deck that is in that condition state. This definition could 
be interpreted as the probability of each unit of the deck being in each condition state, whereby a 
deck is divided into a contiguous set of small 1 ft × 1 ft units forming a grid. A widely-used 
approach to model such deterioration is the Markov Chain (Baik, H.S., H.S. Jeong, and D.M. 
Abraham., 2005; Micevski, T., G. Kuczera, and P. Coombes, 2002). Markov Chain models are 
often used to represent the evolution of discrete and finite states of variables at discrete periods. 
A mathematical representation of a Markov Chain is 𝑌𝑌(𝑡𝑡+1) = 𝑷𝑷 ∙ 𝑌𝑌(𝑡𝑡), where 𝑌𝑌(𝑡𝑡) and 𝑌𝑌(𝑡𝑡+1) are 
the vectors that represent the probability mass functions of the discrete state at time t and time 
t+1, respectively. P is the transition probability matrix, which consists of transition probability 
elements 𝑝𝑝𝑖𝑖𝑖𝑖. Each of these elements represents the probability of transitioning to state j at time 
t+1 given that the condition state is i at time t. The matrix P could be invariant or may vary over 
time. In this representation, the former is assumed. 

This study uses the same Markov Chain deterioration model that is adopted by AASHTOWare 
BrM Bridge Management System whereby the following assumptions are made: (a) the 
condition state drops at most by one (i.e., no multi-step transitions are assumed to occur), and (b) 
the transition probability matrix P is independent of age. As a result, the Markov Chain model 
used in this study takes the following form: 

𝑌𝑌(𝑡𝑡+1) = 𝑃𝑃 ∙ 𝑌𝑌(𝑡𝑡) (1a) 

⎣
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⎥
⎤

 (1b) 

The only parameters to be determined are 𝑝𝑝11,𝑝𝑝22,𝑝𝑝33, and 𝑝𝑝44. In the case of estimation, 𝑌𝑌(𝑡𝑡) 
and 𝑌𝑌(𝑡𝑡+1) are obtained from data, and in the case of prediction, 𝑌𝑌(𝑡𝑡) is obtained from data and 
𝑌𝑌(𝑡𝑡+1) is predicted based on Equation 1a. 
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3 PARAMETER ESTIMATION METHODS 

Different statistical estimation methods could be used to estimate the transition probabilities. In 
this study, Bayesian estimation is used to determine transition probabilities for concrete bridge 
decks while taking into account the available estimates determined from previous data or expert 
judgement, thus, allowing for the incorporation of new inspection data to update the estimates of 
deterioration models as these data become available. As a reference, maximum likelihood 
estimation (MLE) is also used whereby only inspection data over one period (two consecutive 
inspections) are used. 

3.1 NOTATION 

Given the at most one-step deterioration assumption in the Markov Chain model, for each 
condition state i at time t only two transition probabilities govern the deterioration that takes 
place between time t and time t + 1, namely the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖  𝑖𝑖+1 indicating 
whether a unit of a deck remains in the same state i or transitions to the next lower state i + 1, 
respectively. Since and 𝑝𝑝𝑖𝑖  𝑖𝑖+1 = 1 – 𝑝𝑝𝑖𝑖𝑖𝑖, only 𝑝𝑝𝑖𝑖𝑖𝑖 needs to be estimated for each condition state i 
at time t. The variables 𝑁𝑁𝑖𝑖

(𝑡𝑡) and 𝑁𝑁𝑖𝑖
(𝑡𝑡+1) represent the area of the deck that is in condition state i 

at time t and the area that remains in condition state i at time t +1, respectively. 

3.2 MAXIMUM LIKELIHOOD ESTIMATION 

The event that a unit of deck remains in the same condition state or not in the next year can be 
described as a Bernoulli process, which has two outcomes, success and failure. Assuming that 
each 1 ft × 1ft unit of bridge deck remains in the same condition state independently with the 
same probability 𝑝𝑝𝑖𝑖𝑖𝑖, the maximum likelihood estimate of 𝑝𝑝𝑖𝑖𝑖𝑖 can be shown to be the following: 

 𝑝𝑝𝚤𝚤𝚤𝚤,𝑀𝑀𝑀𝑀𝑀𝑀� = 𝑁𝑁𝑖𝑖
(𝑡𝑡+1)

𝑁𝑁𝑖𝑖
(𝑡𝑡)  (2) 

That is, the maximum likelihood estimate of 𝑝𝑝𝑖𝑖𝑖𝑖 is the ratio of the deck area that remains in state i 
at time t + 1 to the deck area that was in state i at time t. In this approach, only the inspection 
data available from two consecutive inspections are used to estimate the transition probabilities 
and, as a result, the Markov Chain deterioration model. 

3.3 BAYESIAN ESTIMATION 

Another approach to estimate transition probabilities is that of Bayesian estimation, whereby the 
transition probabilities are assumed to follow certain distributions, the parameters of which are 
updated when new condition observations are made. In this approach, the estimates of the 
transition available before the two most recent sets of inspection data are collected are taken into 
account in the estimation process.  

As in the case of maximum likelihood estimation, the event that a 1 ft × 1ft unit of the deck 
remains in the same condition state or not in the next year is also described as a Bernoulli 
process. For such events, the Beta distribution is commonly selected as the prior distribution for 
mathematical convenience whereby the posterior distribution is derived to also be a Beta 
distribution through the application of Bayes’ law. Using the mode of the posterior distribution 
as the point estimate of 𝑝𝑝𝑖𝑖𝑖𝑖, the Bayesian estimation of 𝑝𝑝𝑖𝑖𝑖𝑖 can be shown to be the following: 
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𝑝𝑝𝚤𝚤𝚤𝚤,𝐵𝐵𝐵𝐵𝐵𝐵� = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑁𝑁𝑖𝑖
(𝑡𝑡+1)−1

𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑁𝑁𝑖𝑖
(𝑡𝑡)−2

 (3) 

Note that when the parameters of the prior distribution 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 take the values of 1, 
corresponding to a uniform prior distribution, the Bayesian point estimates of 𝑝𝑝𝑖𝑖𝑖𝑖 are identical to 
the Maximum Likelihood estimates. Also note that when 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 take the values of 0, 
mode and mean of the posterior distribution are approximately equal if 𝑁𝑁𝑖𝑖

(𝑡𝑡) and 𝑁𝑁𝑖𝑖
(𝑡𝑡+1) are 

sufficiently large, which is the case for the dataset used in this study. 

4 DATA 

To evaluate the performance of the above two methods in forecasting future condition states of 
concrete bridge decks, an empirical investigation is conducted based on available data. In this 
analysis, the inspection records of a set of bridges for the year 2015 and 2016 are compiled. 
Once various discrepancies and inconsistencies discussed in more detail subsequently are 
addressed, a total of 357 bridge deck records are considered. This dataset is then divided into 
training and validation datasets, which are discussed in more detail in section 5. 

4.1 DATA COLLECTION AND DEFINITION 

The data used in this study are gathered from the Ohio Department of Transportation bridge 
inspection database for the years 2015 and 2016. The variables in the inspection report database 
and their definitions are presented in Table 2.  

TABLE 2: Variables in the inspection report database and their definitions 
Name Definitions 

STATE STATE is the Federal Information Processing Standards (FIPS) code assigned to each 
state, and it is 39 for all bridges in Ohio. 

STRUCNUM STRUCNUM is the structure file number to identify bridges; this number is unique for 
every bridge. 

EN 
EN is the element number for a certain bridge element. In this project, bridge element to 
be analyzed is reinforced concrete deck, and the element number for it is 12. Therefore 
all records with EN of 12 are selected from the database. 

EPN 

EPN is the parent element number for bridge elements. In this project, the element to be 
analyzed is reinforced concrete deck, and the only element that is attached to concrete 
decks is wearing surface (element number: 510). Therefore, all records with EN of 510 
and EPN of 12 are selected from the database. From these data, protection system factors 
in concrete deck deterioration models can be determined. 

TOTALQTY TOTALQTY is the total quantity of the bridge element. The unit of quantity for bridge 
decks is square foot. 

CS1, CS2, CS3 and 
CS4 

CS1, CS2, CS3 and CS4 are the quantity of a bridge element in condition states 1 to 4, 
respectively. In this project, they represent the deck area in condition states 1 to 4 based 
on the condition state definitions provided by AASHTO Bridge Element Inspection 
Guide Manual (2010). 

 

4.2 DATA FILTERING 

Some procedures are applied in this study to organize, compile, and select the original inspection 
records. This section provides a description of the preparation of the dataset used. 
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4.2.1 BRIDGE ELEMENT FILTER 

The focus of this study is reinforced concrete deck. Thus, all inspection records with the element 
number (EN) of 12, indicating bridge decks, are selected. 

4.2.2 INSPECTION RECORDS PAIR-UP 

Since not all bridges are inspected every year and the analysis necessitates that condition 
inspection data have to be available for two consecutive years, inspection reports in 2015 and 
2016 are paired up based on the structure number. For all the records of reinforced concrete 
decks in 2015, 914 out of 3,183 decks are inspected in 2016. For these bridges, the inspection 
records in 2015 and 2016 are extracted. 

4.2.3 BRIDGE DECK AREA DISCREPANCY 

The area of bridge decks is found to vary from year to year. Small variation could be a result of 
measurement errors, while large differences could be indicative of record keeping errors. In this 
study records that exhibit large differences are discarded. Considering the empirical cumulative 
distribution function of the difference in deck area between 2015 and 2016, records with 
differences between – 5 to + 5 square feet are deemed acceptable. All other records are not 
considered further. 

4.2.4 DETERIORATION ASSUMPTION CONSISTENCY 

The estimation methodologies in Section 3 are based on the assumption that there are no 
improvement in the condition state of bridge decks from year t to t+1 and no multi-step 
deterioration transition within one unit period (i.e., no condition state transitions from 1 to 3 or 4, 
and from 2 to 4). The subset of bridges that comply with these criteria considering a tolerance of 
– 5 to + 5 square feet are, therefore, selected for analysis in this study. 

5 EMPIRICAL ANALYSIS 

5.1 ANALYSIS SET-UP 

The dataset consisting of 357 bridge deck records described in section 4 is divided into training 
and validation datasets. The training dataset contains 282 to 287 records (depending on the two 
cases considered as discussed subsequently) and is used to determine estimates of transition 
probabilities using the two methods. The estimated transition probabilities are then applied to the 
year 2015 inspection records of bridge decks in the validation dataset containing the remaining 
75 to 70 records to predict their condition state in the year 2016. The similarity between the 
predicted and reported condition states is used as a measurement to assess the performance of the 
two methods. 

The squared Hellinger distance (HD2) metric is commonly used to measure the degree of 
similarity between two probability mass functions. This metric is used in this study to assess the 
similarity between two condition states, whether measured or predicted. The squared Hellinger 
distance is expressed as following: 

𝐻𝐻𝐻𝐻2 =  1
2
∑ ��𝑝𝑝𝑖𝑖 − �𝑞𝑞𝑖𝑖�

2𝑘𝑘
𝑖𝑖=1  (4) 
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where 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 are the elements of two probability mass functions for which the degree of 
similarity is to be assessed. The upper and lower limits of HD2 are 1 and 0, respectively. A 
smaller value indicates a higher degree of similarity between the two probability mass functions. 

To use measured condition states in calculating HD2, the reported condition state vectors of 
bridge decks must be converted to probability mass functions. This conversion is achieved by 
normalizing the state vector depicting the bridge deck area in each state by dividing the area in 
each state by the total area. In the case of predicted condition states, the predictions based on 
Equation 1a directly take the form of a probability mass function. 

Based on an exploratory analysis, a few bridge decks are identified as having unique 
characteristics. As a result, the records for these bridge decks are given special treatment in the 
analysis. 

As noted previously, there are 357 records of bridge decks in the dataset. Among the 357, 70 
reflect observed deterioration between 2015 and 2016. Figure 1 shows the extent of this 
deterioration as measured by HD2 capturing the degree of similarity between the condition state 
vectors in 2015 and 2016 where the values are ordered from largest to smallest along the x-axis. 
Clearly, four bridge decks exhibit substantial deterioration as reflected in the large HD2 values 
with respect to those of the other bridge decks. 

 
FIGURE 1: Bar chart of HD2 between 2015 and 2016 for all bridges 

Note that bridge decks represented in the training dataset contribute to the estimates in 
accordance to their bridge deck area whereby decks with larger deck areas have larger 
contributions. The proportion of deck area for these four bridge decks with respect to the total 
area of all bridge decks in the training dataset (if these four bridges were to be included in the 
training dataset) are 0.18%, 2.96%, 0.05%, and 0.08%, respectively. 

In addition, one bridge deck is found to exhibit a different deterioration pattern with respect to all 
other bridge decks. More specifically, this bridge deck is the only one that has some deck area in 
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condition state 3 in 2015 where part of this deck area deteriorates to condition state 4 in 2016. 
The inspection record for this bridge deck is shown in Table 3. All the other bridge decks either 
have no deck area in condition state 3 in 2015 or have some deck area in condition state 3 in 
2015 but none of this area deteriorates to state 4 in 2016. 

TABLE 3: Inspection record for unique deterioration pattern bridge (Structure number: 7904983, unit: 
square feet) 

Year 
Total 

Deck Area 

Area in 
Condition 

State 1 

Area in 
Condition 

State 2 

Area in 
Condition 

State 3 

Area in 
Condition 

State 4 
2015 14433 12267 1877 289 0 
2016 14433 12234 1876 289 34 

 

Given that these five bridge decks appear to be distinctly different from all other decks in the 
dataset, the impact their corresponding records could have on the results may be substantial. 
Therefore, two scenarios are considered. In Scenarios 1 the records of these five bridge decks are 
included in the validation dataset, resulting in a total of 282 records in the training dataset. In 
Scenarios 2 these five records are included in the training dataset resulting in a total of 287 
records in this dataset. The records of all other bridges are randomly assigned to each of the two 
datasets. 

To evaluate the performance of the maximum likelihood and Bayesian estimation methods, 
transition probabilities are determined using the training dataset. Applying the estimated 
transition probabilities to the condition state vector of bridge decks in the validation dataset for 
the year 2015, the condition states of these bridges are predicted for the year 2016. The similarity 
between the predicted and reported condition states for 2016 are then compared across the two 
methods.  

As discussed in session 3.3, in the Bayesian estimation method, the transition probabilities 
available before the collection of condition data for 2015 and 2016 are assumed to follow Beta 
distributions defining the priors in the Bayesian framework. In section 3.3 the Beta distribution is 
described through its parameters 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. For the purpose of this analysis, the Beta 
distribution is conveniently parameterized through the mean and sample size, referred to as the 
prior mean and confidence “parameters”. The relationship between this parameterization and the 
one in section 3.3 is that the confidence (sample size) is the summation of 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 
the prior mean is the ratio of 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 to the sample size. The prior mean represents the prior belief 
about the mean value of 𝑝𝑝𝑖𝑖𝑖𝑖. The sample size represents the number of samples used to derive 𝑝𝑝𝑖𝑖𝑖𝑖, 
which is a measure of confidence in the prior belief about 𝑝𝑝𝑖𝑖𝑖𝑖. 

In this analysis the confidence is set to vary between 0 and 400,000 square feet. When the 
confidence is set to 0, the Bayesian point estimate (the mode of the posterior distribution) is 
equal to the maximum likelihood estimate. The upper limit sample size of 400,000 is selected 
based on recommendations in Pontis Technical Manual (1993). This manual suggests that it is 
reasonable to assume that the prior distribution of transition probabilities is developed based on 
observations for 10 to 20 bridges. Considering that the average deck area for the considered 
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bridge dataset is about 20,000 square feet, 20 bridge observations yield the upper limit of 
400,000 square feet for the assumed confidence. 

As for the prior mean, 10,000 mean values of prior transition probabilities (p11, p22 and p33) are 
generated independently from a uniform distribution that ranges between zero and one. Each set 
of the prior transition probabilities is updated using the training dataset through the application of 
the Bayesian updating method presented in section 3.3. 

Combined with confidence values ranging from 0 to 400,000 in increments of 1,000, 4,000,000 
sets of transition matrices are determined based on Bayesian estimation. Applying these 
transition matrices to 2015 condition state vectors of bridge decks in the validation dataset, the 
condition state vectors of these bridges are predicted for 2016. The similarity between the 
predicted and reported condition states for 2016 are then measured using the HD2 metric. 

The HD2 metric is computed for each bridge deck in the validation dataset for all generated prior 
mean values of p11, p22 and p33 and the levels of confidence in these mean values. Thus, for a 
given bridge deck and one set of generated mean values, a curve of HD2 versus confidence can 
be plotted. Figures 2 and 3 show two examples of such plots. Since, as discussed in section 3, the 
Bayesian estimates are approximately equal to the maximum likelihood estimates at zero 
confidence for large values of 𝑁𝑁𝑖𝑖

(𝑡𝑡) and 𝑁𝑁𝑖𝑖
(𝑡𝑡+1), which are the case for the training datasets, 

Figure 2 indicates a case where a greater-than-zero confidence in the prior mean values leads to 
Bayesian estimates that produce a superior prediction for 2016 (lower HD2) than that of the 
maximum likelihood estimates. Figure 3 indicates a case where a confidence greater than zero 
leads to an inferior prediction to that based on the maximum likelihood estimates. That is, the 
Bayesian and maximum likelihood estimates would reflect the same prediction performance 
when the confidence in the prior mean values is assumed zero for the Bayesian estimation 
method. 

To quantify the improvement in prediction by using Bayesian estimation at the optimal 
confidence value for a set of prior mean values, the following measure is defined: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀
2 −𝐻𝐻𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵

2

𝐻𝐻𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀
2  (5) 

where 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀2  and 𝐻𝐻𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵2  are the HD2 values for the predictions based on the maximum 
likelihood and Bayesian estimates, respectively. This measure of Reduction is depicted in Figure 
2. Naturally, for a case like the one shown in Figure 3, the measure Reduction takes a value of 
zero. 



 

12 
 

.  

FIGURE 2: Example HD2 versus confidence plot where Bayesian estimates at the optimal 
confidence level are superior to those of maximum likelihood 

 
FIGURE 3: Example HD2 versus confidence plot where Bayesian estimates at the optimal 

confidence level are equivalent to those of maximum likelihood 

5.2 RESULT 

All 4,000,000 sets of the Bayesian updated transition probabilities based on the combinations of 
prior mean values and confidence levels and the one set of maximum likelihood estimated 
transition probabilities are applied to the bridge decks of the Scenario 1 and Scenario 2 
validation datasets as defined in section 5.1. Figure 4 shows the number of cases for each bridge 
where the Bayesian estimates are superior to the maximum likelihood estimates (i.e., 
Reduction > 0%) under Scenario 1 as shown in Figure 4(a) and under Scenario 2 as shown in 
Figure 4(b). Note that in Scenario 1 there are 75 bridge deck records in the validation set, while 
in Scenario 2 there are 70 records. 

In Figure 4, bridge ID is defined to be the rank among the 75 bridge deck records in the 
validation dataset of Scenario 1 based on the descending order of the values of HD2 measuring 
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the similarities of the reported condition states in 2015 and 2016. The counts reported in Figure 4 
for each bridge represent the number of sets of prior transition probabilities out of the 10,000 
generated ones that lead to Bayesian estimates that produce predictions that are superior to the 
prediction produced by the maximum likelihood estimates. 

Based on Figure 4, the performance of Bayesian updating is clearly different for the two 
scenarios. Under Scenario 1, where the records of the five distinctly different bridge decks 
belong to the validation dataset, Figure 4(a) indicates that Bayesian updating is superior to 
maximum likelihood for a substantially large number of cases associated with a fairly small 
number of bridge decks, specifically those that exhibit more substantial deterioration between 
2015 and 2016. 

The bridge decks that are associated with the superiority of Bayesian updating over maximum 
likelihood include the four decks found to exhibit the most deterioration between 2015 and 2016 
– bridge ID values of 1 through 4 in Figure 4. They also include the one and only deck that 
exhibits deterioration that involves a transition to state 4 in 2016 – bridge ID value of 5 in Figure 
4 (the deck with the eighth largest change in deterioration between 2015 and 2016 when 
considering all bridge decks as depicted in Figure 1). These results are consistent with the 
expectation that for decks that experience deterioration that is not well represented in the training 
dataset, incorporating prior information with the two most recent condition inspections via 
Bayesian updating is advantageous. 

 
FIGURE 4: Bar chart by Bridge ID when Reduction > 0%; (a) Scenario 1; (b) Scenario 2 

Under Scenario 2, where the records of the five distinctly different bridge decks identified in 
section 5.1 belong to the training dataset, Figure 4(b) indicates that Bayesian updating is superior 
to maximum likelihood only for a small number of cases spanning most bridge decks in the 
validation dataset. This result suggests that due to the unrepresentative impact the five distinctly 
different decks have on the estimates, only a small set of prior mean values and confidence levels 
lead to more accurate Bayesian estimation based predictions with respect to the maximum 
likelihood estimation based predictions. That is, only a few combinations of prior mean values 
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and confidence levels lead to Bayesian estimates that counter the maximum likelihood estimates 
that are corrupted by the presence of the five distinctly different bridges in the training dataset. 

6 SUMMARY AND FUTURE RESEARCH 

A Bayesian updating procedure is proposed to estimate a Markov Chain based concrete deck 
deterioration model in a manner that combines condition data collected over two inspection 
cycles and the deterioration information available prior to the collected condition data. Single 
period (one year) transition probabilities are estimated using Bayesian updating and maximum 
likelihood estimation where in the case of the latter only the collected condition data over two 
inspection cycles are used. 

A dataset of bridge deck condition assessments based on AASHTO condition state definitions 
collected by a state infrastructure agency spanning two years is used to evaluate the performance 
of the two methods. A training and validation datasets are selected from the original dataset 
where the former is used for estimation and the latter for prediction and evaluation. 

The evaluation is based on measuring the degree of similarity between reported condition states 
and those predicted based on the estimated transition probabilities using the two methods. While 
Bayesian updating is found to be superior to maximum likelihood estimation for many cases, this 
superiority is highly dependent on the deterioration nature of the bridge decks reflected in the 
training dataset. 

Several possible areas for future research are worth pursuing. First, it is important to further 
investigate the effect of the nature of the datasets on the results and conclusion. A more refined 
experimental design could be used for this purpose. Second, the sensitivities of the results to 
various assumptions are worthwhile to explore. Such assumptions could then be relaxed if the 
results are found to be sensitive to them, especially those with high sensitivity. For example, 
adjacent bridge deck units are not expected to deteriorate independently as is assumed in this 
study. Also, deterioration could lead to more than a one-level change in condition state, unlike 
the single-level change assumed in this study. In addition, the transition probabilities may not be 
age-independent as is assumed in this study. Moreover, confidence in the prior mean values are 
not likely to be known as is also assumed in considering the Bayesian estimates that correspond 
to the maximum improvement in the quality of the corresponding predictions with respect to the 
quality of the predictions based on the maximum likelihood estimates. Furthermore, observed 
condition values are not error-free as is assumed in the estimation and evaluation aspects of the 
study. Third, additional variables could be taken into account in the deterioration model such as 
the effects of age, environment, loading, and protection systems. 
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